383 research outputs found

    A p-multigrid method enhanced with an ILUT smoother and its comparison to h-multigrid methods within Isogeometric Analysis

    Full text link
    Over the years, Isogeometric Analysis has shown to be a successful alternative to the Finite Element Method (FEM). However, solving the resulting linear systems of equations efficiently remains a challenging task. In this paper, we consider a p-multigrid method, in which coarsening is applied in the approximation order p instead of the mesh width h. Since the use of classical smoothers (e.g. Gauss-Seidel) results in a p-multigrid method with deteriorating performance for higher values of p, the use of an ILUT smoother is investigated. Numerical results and a spectral analysis indicate that the resulting p-multigrid method exhibits convergence rates independent of h and p. In particular, we compare both coarsening strategies (e.g. coarsening in h or p) adopting both smoothers for a variety of two and threedimensional benchmarks

    On the Construction of Deflation-Based Preconditioners

    Full text link

    A comparison of Krylov methods for Shifted Skew-Symmetric Systems

    Full text link
    It is well known that for general linear systems, only optimal Krylov methods with long recurrences exist. For special classes of linear systems it is possible to find optimal Krylov methods with short recurrences. In this paper we consider the important class of linear systems with a shifted skew-symmetric coefficient matrix. We present the MRS3 solver, a minimal residual method that solves these problems using short vector recurrences. We give an overview of existing Krylov solvers that can be used to solve these problems, and compare them with the MRS3 method, both theoretically and by numerical experiments. From this comparison we argue that the MRS3 solver is the fastest and most robust of these Krylov method for systems with a shifted skew-symmetric coefficient matrix.Comment: 23 pages, 3 figure

    A mathematical model for the dissolution of particles in multi-component alloys

    Get PDF
    Dissolution of stoichiometric multi-component particles is an important process ocurring during the heat treatment of as-cast aluminium alloys prior to hot extrusion. A mathematical model is proposed to describe such a process. In this model equations are given to determine the position of the particle interface in time, using a number of diffusion equations which are coupled by nonlinear boundary conditions at the interface. This problem is known as a vector valued Stefan problem. Moreover the well-posedness of the moving boundary problem is investigated using the maximum principle for the parabolic partial differential equation. Furthermore, for an unbounded domain and planar co-ordinates an analytical asymptotic approximation based on self-similarity is derived. Moreover, this self-similar solution and the asymptotic approximation are extended to the vector valued Stefan problem. The approaches are compared to each other and the asymptotic approximation is used to gain insight into the influence of all components on the dissolution. Subsequently a numerical treatment of the vector valued Stefan problem is described. The numerical method is compared with solutions by analytical methods. Finally, an example is shown

    A mathematical model for the dissolution of particles in multi-component alloys

    Get PDF
    AbstractDissolution of stoichiometric multi-component particles is an important process occurring during the heat treatment of as-cast aluminum alloys prior to hot extrusion. A mathematical model is proposed to describe such a process. In this model equations are given to determine the position of the particle interface in time, using a number of diffusion equations which are coupled by nonlinear boundary conditions at the interface. This problem is known as a vector valued Stefan problem. A necessary condition for existence of a solution of the moving boundary problem is proposed and investigated using the maximum principle for the parabolic partial differential equation. Furthermore, for an unbounded domain and planar co-ordinates an asymptotic approximation based on self-similarity is derived. The asymptotic approximation is used to gain insight into the influence of all components on the dissolution. Subsequently, a numerical treatment of the vector valued Stefan problem is described. The numerical solution is compared with solutions obtained by the analytical methods. Finally, an example is shown

    A vector-valued Stefan problem from aluminium industry

    Get PDF

    A vector valued Stefan problem from aluminium industry

    Get PDF
    Dissolution of stoichiometric multi-component particles in ternary alloys is an important process occurring during the heat treatment of as-cast aluminium alloys prior to hot-extrusion. A mathematical model is proposed to describe such a process. In this model an equation is given to determine the position of the particle interface in time, using two diffusion equations which are coupled by nonlinear boundary conditions at the interface. Moreover the well-posedness of the moving boundary problem is investigated using the maximum principle for the parabolic partial differential equation. Furthermore, for an unbounded domain and planar co-ordinates an analytical asymptotic approximation based on self-similarity is derived. This asymptotic approximation gives insight into the well-posedness of the problem

    www.elsevier.com/locate/cam On deflation and singular symmetric positive semi-definite matrices

    Get PDF
    For various applications, it is well-known that the deflated ICCG is an efficient method for solving linear systems with invertible coefficient matrix. We propose two equivalent variants of this deflated ICCG which can also solve linear systems with singular coefficient matrix, arising from discretization of the discontinuous Poisson equation with Neumann boundary conditions. It is demonstrated both theoretically and numerically that the resulting methods accelerate the convergence of the iterative process. Moreover, in practice the singular coefficient matrix has often been made invertible by modifying the last element, since this can be advantageous for the solver. However, the drawback is that the condition number becomes worse-conditioned. We show that this problem can completely be remedied by applying the deflation technique with just one deflation vector
    corecore